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Stabilization of an unstable steady state in intracavity frequency-doubled lasers
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We predict theoretically that it is possible to stabilize the steady state in multimode, intracavity doubled,
diode pumped Nd:YAGneodymium-doped yttrium aluminum garh&tsers using two output signals, namely,
the sum intensities of the infrared laser modes polarized in two different orthogonal directiemsly) and
one feedback input parameter, the pump rate. The stabilization is possible for arbitrarily large numbers of
modes polarized in th¥ and direction. Different strategies of stabilization based on proportional feedback,
derivative control, and their combination are discussed. The analytical and numerical results of the linear
control theory are illustrated with numerical simulations of the underlying nonlinear differential equations. We
show that one can maintain the stable steady state of the laser output for an arbitrarily large pump rate by
taking advantage of a tracking procedure.

PACS numbeps): 05.45.Gg

[. INTRODUCTION sents a set of 20+ n) nonlinear coupled rate equations for
We consider a novel approach to the “green problem”the mode intensities and gains. The model has successfully
present in the operation of intracavity frequency-doubledpredicted the existence of antiphase dynamical states, energy
Nd:YAG (neodymium-doped yttrium aluminum garhéd-  sharing of chaotic polarization modes of the laser, and also
sers. The Nd:YAG lasers normally emit light at the funda-the possibility of obtaining stable operation by adjusting the
mental wavelength of 1064 nm in the infrared spectral rangeoptical axes of the KTP and YAG crystals to a certain angle
By the help of a nonlinear optical crystal such as K{p®-  [5]. Our analysis in the present paper is completely based on
tassium titanyl phosphateone can convert the infrared laser that model.
radiation into visible green lightwith a wavelength of 532 Note that Liuet al. [6] have recently developed a more
nm) by the process of second harmonic and sum frequencgophisticated model of the laser system that includes both the
generation. To obtain the maximum green light outfthe  amplitudes and phases of the electric fields of the infrared
intensity of green light produced by the KTP crystal is pro-light. The previous moddl5] is a simplification of this one
portional to the square of the intensity of the fundamentaland can be derived from it by omitting the equations for the
wavelength, the KTP crystal is placed inside the laser cav-phases. Liuvet al. [6] have shown that the dynamics of the
ity. This, however, causes a pronounced dynamical instabilphases can be important in the case that all modes are polar-
ity in the laser performance. The sum frequency generatioized in the same direction, when the cavity loss due to the
provides a nonlinear loss mechanism in the laser dynamicsmitted green light is extremely small. Because we consider
that globally couples the infrared cavity modes, i.e., eachhe case of a nonvanishing number of modes in both or-
infrared cavity mode is coupled to all others. As a result, thehogonal directions and, furthermore, we are interested in
output intensity can exhibit periodic and chaotic oscillations.high output powers of the green light, we believe that, in our
Such an instability has originally been observed and anacase, the dynamics of the phases does not have a crucial
lyzed by Baerf{1]. He developed a deterministic rate equa-influence.
tion model, in order to explain the above phenomenon. A The main goal of our paper is to show that the laser output
detailed linear stability analysis of Baer’s equations was perean be stabilized by feeding back to the pump rate an amount
formed by Mandel and W{2]. One significant advance was of the output signal composed of two total intensities of the
made by Oka and Kubo{&] who recognized that the polar- infrared light polarized in two different orthogonal direc-
ization of the cavity modes plays a critical role in the lasertions. The underlying idea follows from the linear analysis of
dynamics and, therefore, used an intracavity quarter-wavéhe system equations in the vicinity of the fixed point. It is
plate to stabilize the laser output. Their theoretical analysishased on the observation that the equations for the total in-
however, was limited to a model that only includes two or-tensities polarized itX andY directions breaks off from the
thogonally polarized cavity modes. Jamesal. [4] and total system of 2ifi+n) linear equations describing the dy-
Bracikowski and Roy5] have generalized this model for the namics of the individual modes. The problem of the stability
case of multiple longitudinal modes. They took into accountof the fixed point reduces to the problem of the stability of
the birefringence of the YAG crystal and have shown that thehe total intensities. The latter is described by a closed sys-
modes can exist only in two orthogonal directions of polar-tem of four linear differential equations. Thus, by feeding
ization, say, inX andY directions. Form andn modes po- back the total intensities, one can effectively control the sta-
larized inX andY directions, respectively, this model repre- bility of the steady state. It is possible to achieve and main-
tain stability for arbitrarily large numbens andn. For the
multimode regime, this is a surprising result, since the sys-
*Electronic address: pyragas@kes0.pfi.lt tem produces hyperchaotic oscillations with multiple posi-
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tive Lyapunov exponents’]. Stabilization of the fixed point erwise wj=1—g. This factor determines the relative
with a single feedback parameter is still possible due to th@mount of green light produced by second harmonic vs sum
fact that the fixed point has only two unstable directions,frequency generation for different polarization configurations
even for a large pump rate, i.e., the fixed point is less unef the laser moded’ is a small signal gain related to the
stable than the global strange attractor of the system. pump rate; we consider it as a main control parameter of the
The work of Colet, Roy, and Wiesenfe[d] was also system.U(t) is a time-dependent feedback signal introduced
devoted to a numerical control of chaos in this model. Theyto control the stability of the steady state and is experimen-
used the method of occasional proportional feedd&kin  tally easy to feed back into the system. An explicit expres-
order to stabilize unstable periodic orbits embedded in thaion for that signal will be presented in Sec. V.
chaotic attractor. Another associated work on control of In our numerical analysis, we take the same values of the
chaos in laser systems was performed by Bielawskil.[9]  parameters as in the Ref®,7]: 7,=0.2 ns, 71=240 us,
who managed to stabilize experimentally an unstable steady,=0.01 for all k=1,... m+n,3=0.7, e=5X 1078, g
state in a fiber two-level class B laser. =0.1. In analytical estimations, we suppose that the param-
Our paper is organized as follows. Section Il contains thesters can vary, however, their orders remain unchanged.
description of the model, the characteristic values of the pa- Equations(1) contain variables and parameters whose
rameters used in numerical analysis and the model equatiomsagnitude differ from each other by several orders and
in a dimensionless form. In Secs. Il and IV, we analyze thewhich have rather different characteristic time scales. To
steady-state solution of the system and its linear stabilitypvercome that inconvenience, we rewrite the equations in
respectively. Section V is devoted to the linear control theorydimensionless form:
of the steady state. We consider various control strategies
based on proportional feedback, derivative control, and their le=[A+e(gh—2M ]Iy, (29
combinations. In the appropriate parameter spaces, we nu-
merically obtain domains of the stable laser operation. Sec- Ag=y+u—[1+(1—p)l+B(S+S)1(1+ 74).
tion VI gives an analytical estimation of the parameter values (2b)
corresponding to the stabilized steady state in the case qI
proportional feedback control. In Sec. VII, we describe the

results of numerical integration of the underlying nonlinear _
; . . . o~ . Gy—« t TiTG T
differential equations that confirm the validity of the linear A, = S=— T= . G=+/—,
o T

he new variables and parameters are defined as follows:

control theory. We discuss a tracking procedure that allows G T
us to maintain the stable steady state for an arbitrarily large )
pump rate. We finish our paper with conclusions presented in U I
T T
Sec. VIII. e=e\|—, 7=\— u=—, y=—, (4
aTg aTs a a
II. MODEL

The dynamics of a multimode Nd:YAG laser with a Mkzgk piljtgh=gS+(1-g)S, for k=1,...m,
frequency-doubling KTP crystal located inside the cavity can
be described in terms of the rate equations for the intehgity =gS§+(1-9)S; for k=m+1,... m+n, (5)

and gainG, associated with each modg],
m+n

di,

m
SX:Z I, =
TCW:(Gk—ak—gflk—ZE;k lujklj)lk! (1a) j=1 ! Sy

1. (©)

j=m+1

I, andAy in Egs.(2) denote the time derivative of the cor-

responding variables with respect to the dimensionless time
1+|k+ﬁ;k lj)Gk' (1b) 9, 1 =dl, /d9 andA,=dA,/d9. For the given values of

the parameters, the characteristic time schles approxi-
Here,k=1,... m andk=m+1,... m-+n correspond to mately 2.19 us. The variable\, describes the deviation of
the modes polarized iXX and Y directions, respectivelyr,  the gainGy from the cavity losse normalized to the char-
means the cavity round trip time ang the fluorescence acteristic scal&gs~0.91x 10" 4. The characteristic values of
lifetime of the N&* ion. a, is the cavity loss parameter for the dimensionless conversion efficieneyand the square
the kth mode.8 denotes the cross-saturation parameter reroot of the ratio between the inversion and the cavity decay
lated to the competition among the different longitudinalrate 5 defined in Eq.(4) are e~5.48<10 2 and 7~9.32
modes and is taken to be the same for all mode pairs. Th& 10 3. The parameterg andu are the dimensionless signal
nonlinear coefficient is associated with the conversion ef- gain and feedback signal, respectively, normalized to the
ficiency of the intensity of the infrared intensity into green cavity lossa. S, andS; are the total intensities of the infra-
light converted by the KTP crystalj gives a geometrical red light polarized inX andY directions, respectively. These
factor that depends on the phase delay due to the YAG angarameters are available from experimental measurements.
KTP crystals as well as on the angle between the YAG andVe use them as the feedback variables, in order to stabilize
KTP fast axes. The facton; accounts for the change in the intensity of the laser.
geometry when the modgsand k have different polariza- The variables of Eq€2) change in characteristic intervals
tions. If the modes have the same polarizatigp=g, oth-  of the order of unity, and their characteristic time scale is

Gy

TfW:F+U(t)_
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also of the order of unity. Thus, the above dimensionless
form is well suited for numerical as well as analytical analy-
sis.

20 -(Ia) '

Ill. STEADY-STATE SOLUTION

Intensity (arb. units)
]
]

Let us consider the steady-state solutiditsed pointg of
Egs. (2) in the absence of the feedback signat 0. These
solutions are defined by the conditiokjs=0, A, =0, for all
k=1,... m+n. The system has multiple fixed points.
However, here we do not consider the points for which the
intensities of some modes vanish. €0 for somek). We
restrict our treatment to the symmetrical fixed point for
which the intensities and gains among all modes polarized in
X and Y directions are identical:

Gain A (arb. units)

IkEIX! AkEAX, k=1,...m, (78)
FIG. 1. The steady-state solution of the sys{é&igs.(2)] for the
|kz|y, A= Ay, k=m+1,... m+n. (7b) mode configurationrqi,n)=(1,2). (a) Total mode intensities of the
infrared light polarized inX and Y directions,l, andl,, respec-
This fixed point is most important, since it provides thetively, and(b) corresponding normalized mode gaihgandA, as
maximum intensity of the green light. Substituting E¢.  a function of the signal gairy related to the laser pump rateon-

into Egs.(2), we obtain four algebraic equations, sidered as the main control paramgtdihe solid curves display the
numerical solution$Egs. (8)], the dashed curves the analytical so-
Ay—e[(2m—-1)gl+2n(1—-9)l,]=0, (8a) lutions of an approximatiofEgs. (9)].
Ay—e[(2n=1)gly+2m(1—-g)l,]=0, (8b)  =(1,2) are shown in Fig. 1. The analytical estimat[&ys.

(9)] gives a good approximation for the numerical solution of
y—{1+[1+(m=1)B]lI+Bnly}(1+ 7A)=0, (80  the equation without approximation.

y—{1+[1+(n—=1) Bl +Bml}(1+7A,)=0 (8d

for four unknown quantitiesl(,A,,l,,Ay). Taking into ac-
count the smallness of the two parameterand » (e,7
<1), one can obtain an approximate analytical solution

IV. STABILITY OF THE STEADY STATE

Now, we consider the stability of the steady-state solu-
tion. Note that for two specific cases of mode configuration
(m#0,n=0) and (m=n), a similar analysis has been per-

_ formed in Refs[4,5]. Here, we consider the general case of
I,=14+05(e,7n), 9 . ' - . e
X 2(2,7) 3 an arbitrary mode configuration. The linear stability of the
l,=1+0,(z,7) (9b) steady state is defined by small deviations from the fixed
T point,

Ay=e[(2m=1)g+2n(1-9g)]l +Os(e,n), (90
(i, 80 = (1= 1 A= AQ), (1D

Ay=e[(2n—1)g+2m(1—-g)]I+Os(e,n),  (9d)

where (2,AD) is the steady-state solution defined by Egs.

®: (12,A9)=(,,A) for k=1,...m and (7,AD)

=(ly,Ay) for k=m+1,... m+n. Substituting Eq(11) in
(10 Egs.(2) and performing the standard linearization procedure,
one obtains the set of linear equations for small deviations
(ix,0y) defining the stability of the fixed point. By excluding
the variables,, these equations transform to the form

where

| r—1
- 1+p(m+n-1)
andO,(e,n) denotes thenth order corrections with respect
to the small parameters and ». A more accurate solution
can be obtained numerically by an iteration procedure. We

start from the solutiom,=1,=1, substitute them in Eq$3a) ictbyigt et fy=1u, k=1,...m, (129
and(8b), and obtain the values df, andA, . We feed these

values in Egs(8c) and(8d) and solve the linear system with i+ byi[+Cyi+fy=1,8u, k=m+1,...m+n,
respect td, andl, . We again put these new values| gfand e e e (12b)

|, into Eqgs.(88) and(8b) and repeat the procedure until all

variables converge to the fixed values with a predeterminegl,,o 0 5, is the linearized feedback signal. The coefficients

accuracy. Our algorithm provides a fast convergence to thB andc, in Eq. (123 are

desired steady-state solution. X X '
The dependence of the steady-state solutions on the signal

gain vy obtained from the analytical Eq) and the iteration b,= —egly,

procedure of Eqs(8) for the mode configurationng,n) 1+ nA,

(133



3724

€ngy

Cx=|(1-p)(1+ ﬂAx)—m Iy, (13b

PYRAGAS, LANGE, LETZ, PARISI, AND KITTEL

PRE 61

R2(M*N dimensional phase space defined by the variables
(i, -« dimensity - - -simen). The origin of this space is
stable, if the real parts of all 2{+n) eigenvalues of Egs.

and f, is a linear homogeneous function of the variables(12) are negative. For a large number of modes, the eigen-

Sy, Sy and their time derivatives

B 2eny
fy=B(1+ 77Ax)|x(sx+sy)+ 1+—7]AX|x[gsx+(l_g)sy]

+2el,[gs,+(1-9)s, ], (14

wheres, ands, define the deviation of the sum intensities

m m+n
SXZE IJ' Sy:_ 2 |] (15)
j=1 j=m+1

The expressions for the coefficieftsandc, in Eq. (12b)
can be obtained from Eq$§13g and(13b), respectively, by
replacing the subscript by y. The functionf, results from
Eq. (14) by interchanging the subscrigtandy.

The coefficientsa,, by, a,, andb, in Egs.(12) are in-
dependent of the indek, as well asf, and f, are linear

functions of the sums, ands, . These features allow us to

derive the closed system of equations for the segends, .
Those equations are simply extracted by summing(E2g)
through all X modes(from k=1 to k=m) and Eq.(12b
through allY modes(from k=m+1 to k=m+n):

sy +bys, +c s+ mf,=ml,du, (169
sy+bysy+cys,+nf,=nl éu. (16b

Taking into account the expressions fQi{ Eq. (14)] andf, ,
Eqgs.(16) can be rewritten in a more convenient form,

(173
(17b

St Bysy+ Cusc+ Eysy +Fysy=ml,du,
” ! ! _
s, +Bysy+Cysy+Eys,+Fysy=nlyou.

The coefficientB,, C,, E,, andF, in Eq. (179 are

ny
BX_1+7;AX+89(2m_ Dy, (183
engy

Cx_{[1+(m_1),8](1+ ﬁAx)+(2m—1)m Iy
(18b
E,=2s(1—g)ml,, (180

engy

F.=|B(1+ nA,)+2(1-9) T 77AJmIX. (180
The expressions for the coefficieldg, C,, E,, andF,

in Eqg. (17b) are obtained from Eq$18a), (18b), (18¢), and
(18d), respectively, by replacing the subscriplby y and the
numberm by n.

In this section, we consider the problem of stability of the

steady state in the absence of the feedback signal0. In
this case, the right-hand sidens) of Eqgs.(12) and(17) are

value problem for the systeid?2) is not a trivial one. How-
ever, it can be essentially simplified due to the fact that, for
the sumss, ands,, it is possible to split off Eqs(17) from

the total system of Eqg12).

The problem can be divided into two much more simple
ones. The first consists of the analysis of E4s)) for the
sumss, ands, . The origin .Sy ,Sy,Sy) =0 of these equa-
tions defines some subspaR&™ ™4 in the original phase
spaceR?M*M = R2MmtM-4c R2(M*N)  The stability of this
subspace is determined by four eigenvalued;,( i
=1,...,4) ofEgs.(17). Obviously, these four eigenvalues
are the eigenvalues of the original Eq42) as well. The
second problem consists of determining the remaining 2 (
+n)—4 eigenvalues\;,i=1,...,2(m+n)—4 of Egs.(12)
that define the stability of the trajectories inside the subspace
(Sx,Sy+Sx,Sy) =0. In this subspacéd, =f,=0 and Egs(12)
transform to

i+ byip+c,i =0,

k=1,...m, (193

igtbyig+cyiy=0, k=m+1,...m+n. (19b
The system of Eqs(12) splits into a set of 2fi+n) inde-
pendent equations. There anddentical Eqs(19a for the X
polarization andh identical Eqs(19b) for the Y polarization.
As a result, systenil9) has only four different eigenvalues,
two of them,AEﬁ?z), correspond to th& polarization and the
other two, A{{,), to the Y polarization. Thus, for a large
number of modes, the eigenvalues of the original systEzn
are highly degenerated. For any>1 andn>1, the system
has only eight different eigenvalues, four of them are defined
by Egs.(17) and the remaining four by Eq$19). Now we
discuss the above two problems in detail.

Let us start with the first problem, i.e., consider the sta-
bility of Egs. (17). The eigenvalues\; of this system are
determined by the characteristic equation

A?+B,A+C, E,A+F,
de‘( EA+F,  A2+BA+c) 0 (%0
that represents the fourth-order polynomial
A*+a;A+a,A2+agA+a,=0, (21)
where
a;=B,+By, (223
a,=C,+Cy+B,B,—E,E,, (22h)
az=B,C,+B,C,—E,F,—E,F,, (220
a,=C,Cy,—F,F,. (220)

The origin of system(17) is stable, if the real parts of all
roots of the polynomial21) are negative. The numerical

zeros. The problem of stability is completely defined by Egssolution of Eq.(21) is illustrated in Fig. 2a). The depen-
(12) that describe the dynamics of small perturbations in ardence of the eigenvalues; on the signal gainy for the



PRE 61 STABILIZATION OF AN UNSTABLE STEADY STATE. .. 3725

M
/)

imaA

2Fb - . . o

n A L 1 1 i
-0.2 -0.1 -0.0 0.0 -0.20 -0.15 -0.10 -0.05 0.00
Re ) Re A

FIG. 2. Evolution of eigenvalues of the fixed point in the com- FIG. 3. The same as in Fig. 2 but for the mode configuration

plex plane, when the signal gainis increased from 1 to 50 with (2.4).

the step 0.5. The arrows show directions corresponding to the in- . . .
crease ofy. The mode configuration is (1,2Ja) Eigenvalues de- of . Note that, for this mode configuration, the system has

fined by Eqs(21). (b) Eigenvalues defined by Eq@3). The insert ~ ONly 0ne pair of complex conjugated eigenvalur§’)) cor-
in (a) shows an enlarged region close to the origin. Heris in-  fesponding to the subspacs (s, ,sy,sy)=0. Form=1,
creased from 1 to 1.5 with the step 0.005. Eqg. (199 is automatically satisfied, since we hase=i, and
s,=0 in the subspace. The total number of eigenvalues in
mode configurationr,n)=(1,2) is shown in the complex this case is six; four of them are defined by EGS) and two
plane. Aty=y.,~1.22, the real part of two complex conju- by Ed.(19b).
gated eigenvalues becomes positive. The fixed point loses its For any mode configuratiomg,n), the evolution of the
stability through a Hopf bifurcation. Two other complex con- eigenvalues in the complex plane is similar to that presented
jugated eigenvalues have a negative real part forjany in Fig. 2. Figure 3 shows such an evolution for the mode
Next, we consider the second problem, the stability of theconfiguration (2,4). The only difference is that the number
trajectories in the subspacs,(sy ,s;,s,)=0. That problem  of different eigenvalues in the subspaeg,§ s, .sy) =0 is
is defined by Eqs(19). The four different eigenvalues are  now four. They all have negative real parts. Again, only two
obtained from the two characteristic equationé+b,\  €igenvalues corresponding to the dynamics of the sgms
+c,=0 and\?+Dby\ +c¢,=0 that can be solved explicitly: ands, [Egs. (17)] become positive whery exceeds some
threshold value. Note that the total number of eigenvalues in
b b2 this case is 12 and only eight of them are different. This
)\(1),%: - %i Z_C)m (23a means that the eigenvalues corresponding to the subspace
(Sx,SySx,Sy) =0 are degenerated.

In conclusion of this section, we emphasize an important
AWM= Y _V_Cy_ (23b) feature discovered in our analysis. For any mode configura-
' tion (m,n), the unstable fixed point has only two unstable

_ ) eigenvalues, even for a large signal gainThese eigenval-
T_h_e real parts of these eigenvalues are negative at the co[jpg correspond to the dynamics of the sum intensitiesd
ditions sy, and, hence, they should be effectively controlled by feed-
ing back into the system a signal composed of these intensi-

¢>0, ¢>0, b>0, by>0. (24) ties. We consider that control procedure in the next section.

y
Let us evaluate these inequalities for the case of a vanishing
conversion efficiency and vanishing ratio between the inver-

sion and cavity relaxation rate:(7—0). We havec,~c, Now, we analyze the stability of the steady state in the
~(1-p)I andb,~by~7y—egl. Thus,c, andc, are posi-  case of a nonvanishing feedback sigrl0. We combine
tive, if B<1 andb, andb, are p.osmve(for y>1), if 9 this signal from the sum intensiti& andS, [Eq.(6)] of the
<mnle[1+p(m+n—1)]. For the given values of the param- infrared light polarized in two orthogonal direction$,and
eters, these conditions are fulfilled and, hence, the system ‘\8, respective|y_ These intensities are available from experi_
stable in the subspace,(s, s, ,s)=0. mental observation. The feedback signal does not have to

Figure 2b) illustrates the dependence of the eigenvalueghange the position of the fixed point. We look at the fol-
x(ly% on vy for the mode configuration (1,2). As it is expected, lowing general form of the feedback signal satisfying the
the real parts of these eigenvalues are negative for all valueshove main requirement:

V. LINEAR CONTROL THEORY
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d d
U=Ky(S—S)+Ky(S,—S)) + Dxd—st*‘+Dyd—Stf,

(29

whereK,, K,, Dy, andD, are the feedback gain coeffi-
cients, S;=ml, and §)=nl, the steady-state values of the
sum intensities. In the dimensionless foffaq. (2)], the
feedback signal is

U=ke(S—S)) +ky(S,— ) +d, S +dyS),  (26)

where k,=K,/a, k,=K,/a, dy=D,/Te, and d,
=Dy /Ta. Linearization of Eq.(26) in the vicinity of the
fixed point leads to

Su=Kk,S,+kys,+d,s;+dys, . (27) K,

Next, we reconsider Eq€12) and (17) by taking into F_IG. 4. The dom_ains of stability in thég(,ky)_ parameter plane
account Eq(27). We first note that Eqs(19) that describe obtained for proportional feedback control at different values of the
the stability of the trajectories in the Subspacesignal gainy (1.4, 2, 50. The darker regions correspond to the

" $'y =0 ) h din th f th larger values ofy. The lines indicate the domain boundaries, ana-

Sg dsgai)l((;g;r: a(lZ?r)erT]rﬁlig ;ljglfjsaggfaulsr:e th((ae ?QZZE;‘EE ;gnailytically estimated in Sec. VIEq. (35)]. The mode configuration is
: 1,2).
(27) is a linear homogeneous function of the variables( )

(sx,Sy:Sy,Sy), and it vanishes in the subspace

(5x,Sy Sy ,s)’,)=0. Thus, the feedback signal does not 2,=Cyxt Cy+ BBy~ EEy, (31
change the eigenvalu€23) associated with the stability of e s e
the trajectories in the subspacg, (s, ,sy,s;)=0. The tra- a3=ByCy+ B«Cy —EyF—EBFy, (319

jectories in the subspace are stable in the absence of the -~ = e o~ =
feedback signal, and, hence, they remain stable in the pres- a,=CxCy—FyFy. (31d
ence of the feedback signé7). The feedback only influ-
ences the eigenvalues; associated with Eqg17) that de-
scribe the stability of the sung ands, .

In the presence of the feedback sig(@), Eqs.(17) take

We use the Hurwitz criteriofil0], in order to analyze the
stability of the system under control. According to that cri-
terion, all roots of the fourth-order polynomi&B0) have
negative real parts, if there are satisfied the four inequalities

the form
- A A A (A A = A~ A2
SQ+§XS;+6XSX+EXS;+IEXSYZO, (284 a;>0, az>0, a,>0, az(a;a,—aj) a4a1>0.(32)
sy +Bys)+Cysy+Eys;+Fys5,=0, (28b)  For different control strategies, we have checked these in-
equalities numerically. The feedback sigia¥) depends on
where four parameters K;.k,,d,,dy) that define a four-
~ dimensional control vector in a suitable parameter space. We
Bx=Bx—dxmly, (298 restricted our consideration to three different types of the
_ two-parameter controli.e., two of four components in the
C,=C,—kml,, (29b control vector were taken to be zeypsamely,(a) the pro-
B portional feedback controlk(,k,,0,0), (b) the derivative
Ex=Ex—dyml,, (299  control (0,0d,,dy), and (c) the combined control
(kx,0d,,0) or (Ok,,0d,) by using only one output of- or
|~:X:|:X_kym|x_ (290  Y-polarized infrared light. Below, we discuss the results of

the numerical analysis obtained for these different control
The expressions for the coefficierg, C,, E,, andF, in  strategies.

Eq. (28b) are obtained from Eqs29a), (290, (290, and (@ The results of proportional feedback control for the
(290), respective|y, via rep|acing the Subscr'xtbyy and the mode Configuration (1,2) are shown in Flg 4. In the plane of
numberm by n. the feedback parameteris,(k,), the domains of stability are
The characteristic equation of the systé2®) is defined shown for different values of the signal gajn The darker
by the polynomial regions correspond to the larger With increasingy, the
relative area of the stability domain decreases, however, it
A*+a;A%+a,A%+asA +2a,=0, (30) remains infinitely large for any largg. To stabilize the sys-
tem, the feedback has to be positikg ¥ 0) for theX polar-
where ization (there is only one mode in this directiom=1) and

o negative k,<0) for theY polarization(there are two modes
a,=By+By, (313 in this direction,n=2). In other words, the feedback has to
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0.1

15

FIG. 5. The domains of stability in thek(,k,) parameter plane FIG. 7. The domains of stability in thek(,d,) parameter plane
obtained for proportional feedback control at fixgek 50 and dif-  obtained for combined controkg,0d,,0) at different values of
ferent mode configurations (1,4), (2,4), (3,4). The darker regionshe signal gainy (5, 20, 50. The darker regions correspond to the
correspond to the larger values mof larger values ofy. The mode configuration is (1,2).

try to restore the symmetry in the asymmetric distribution of "

thye outputs in thé(yandY gilirections;{t has to increase the Plane. The feedback has to be positivt0) for the X

output intensity in the direction where the number of modegPolarization and negatived(<0) for the Y polarization, as

is small and decrease the output intensity in the directiofvell as in the case of proportional feedback control.

where the number of modes is large. Such an observation (¢) The combined feedback control strategikg,0.d,,0)

seems to be general for any mode configurationn). For ~ and (Ok,,0d,) for the mode configuration (1,2) and differ-

anym<n, the domain of stability is basically located in the ent values of the signal gainare illustrated in Figs. 7 and 8,

region k>0, ky,<0. In the symmetrical casm=n, there respectively. In both cases, there are only finite area domains

remains no domain of stability. Figure 5 shows the depen©f stability that decrease with increasingand disappear for

dence of the stability domain on the mode configurationsufficiently largey. Thus, these control strategies are not so

(m,n). Here,n is fixed equal to 4 aneh is varied from 1 to ~ efficient as those considered (@ and(b), i.e., control with

4. With increasingm, the stability domain decreases and, WO output signals corresponding to different directions of

ﬁna”y, disappears whem=n=4. Thus On|y asymmetric pOIarlzatlon is much more efficient than |$ the case fOI’ (.:Oﬂ'

mode configurationsni# n) are controllable. trol that uses the output of only one d_|rect|on of polarization.
(b) The derivative feedback control is illustrated in Fig. 6.  Note that none of the above techniques does work for the

The domains of stability are shown in the plane of controlSymmetrical casen=n. In our model, allX modes and al¥

parametersd, ,d,) for the fixed mode configuration (1,2) modes have identical parameters. In Sec. VII, we show that

and different values of the signal gain Here, the darker the symmetrical case can be stabilized if this identity is de-

regions correspond to the smaller With increasingy, the ~ Stroyed.

stability domain moves towards the origin of thd,(d,)

0.00-
0_
-0.05
-5
-0.10
>
-~ -10 T 0151
-0.20
15
-0.25
T T M ] U T 1 M 1 1
20 114 115 116 1.17 118 1.19 1.20
0 k

y

FIG. 6. The domains of stability in thed(,d,) parameter plane FIG. 8. The domains of stability in thé,d,) parameter plane
obtained for derivative control technique at different values of theobtained for combined control (Q,,0d,) at different values of the
signal gainy (2, 5, 50. The darker regions correspond to the signal gainy (5, 10, 20. The darker regions correspond to the
smaller values ofy. The mode configuration is (1,2). larger values ofy. The mode configuration is (1,2).
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Both the proportional feedback and the derivative control
techniques have infinitely large area domains of stability in
the appropriate parameter spaces. However, the derivative
control method may be sensitive to noise, since it requires an
experimental differentiation of the output signal. Most ap-
propriate for experimental applications, therefore, is the pro-
portional feedback technique. To get more insight into that
method, we perform some analytical estimations in Sec. VI.

-0.4 4
-0.6-
-0.84

-1.0

PRE 61

VI. ANALYTICAL ESTIMATIONS

-1.2- 2

In order to find analytical expressions for the boundaries

of the stability domain, we evaluate the inequaliti8®) in
the limit of ¢, 79— 0. Here we restrict our analysis to the case

of the proportional feedback technique, representing the
most promising alternative for experimental applications.

FIG. 9. The slope coefficients; = —p{M/p{" and b,=

p{P/p{ of the lines defining the boundaries of the control do-

main[Eqgs.(35)] vs signal gainy for the mode configuration (1,2).

Similar estimations can be performed for the other methods

as well.

Expanding the parametera;, as, a;, and az(a;a,
—ag) —a,a’ in a power series of the parameterandz, we
end up with

a;=2[yp+e(m+n—1)gl]+05(e,7), (338

az=[pM(ke— B)+p{P(ky— B)11% +Oz(e, ),
(33b

a,=[1+B(m+n—1)—mk—nk/](1-B)I*+Oy(e, ),
(339

=TT TN T T2
az(aja,—ag) —asa;

=—[pP(ke— B)+ PP PP (ky— B) + p{P]1 %€

+ 04(81 77)5 (33d)
where
p¥=m| 2n—g(4n—1)— Z—ﬂ (343
p{Y=n| 2m—g(4m—1)— g} (34D
pP=m 2n—g(1+2n—2m)+z—r , (349
(2)— — — ﬂ
py”’=n| 2m—g(1+2m—2n)+ —-|. (340

According to the condition$32), the fixed point is stable if
all four parameters in Eq$33) are positive. In approxima-
tion of the leadinge and » terms all these parameters are
positive, if the following two inequalities are satisfied:

pP(ke— B)+pM(k,— B)>0, (359
PP (k= B)+p{P(k,— B)<O0. (35h)

These inequalities define the stability domain in tke,k,)
parameter plane. The domain is paled by the two likgs

—B=by(k,—B) andk,— B=b,(k,— B) that cross at the point
(ke,ky)=(B,8) and have the slope coefficientd,
=—pMp andb,= —p{P/p{?. These lines are shown in
Fig. 4 for the mode configuration (1,2) and different values
of the signal gainy. The lines give a good quantitative esti-
mation of the domain boundaries.

The above analytical result allows us to easily analyze the
dependence of the stability domain on the signal gain
Figure 9 illustrates that dependence for the mode configura-
tion (1,2). There are shown the slopeg y) andb,(y) of
the lines defining the boundaries of the stability domain. For
small values ofy, these slopes considerably differ from each
other, and the stability domain occupies a large part of the
(kx.ky) plane. With increasing the difference between the
slopes decreases, however, it remains finite whers. The
latter guarantees the theoretical possibility of stabilizing the
steady state for an arbitrarily large pump rate. The result is
valid for an arbitrary mode configurationrm(n), provided
m#n. Form=n, the slopes coinciddy;(y) =b,(y), at any
v, and the stability domain disappears. This finding gives an
analytical explanation why symmetrical mode configurations
are uncontrollable.

From Fig. 9 it is obvious that the slopes satisfy the in-
equality b,(y)<—1<b4(y) for any y with the value—1
located approximately in the center betwebp(y) and
b;(7y). Thus, a good choice of the parameteks,k,) is the
one that lies close to the link,—B= —(k,— ) having a
negative unity slope coefficient. Knowledge of such a rela-
tionship between the parametégsandk, can be useful for
an experimental search of the stability domain in tkg,k,)
plane. For anyy stabilization is possible for anykg,ky)
lying in the domainb, (=) (k,— B8) <ky—B<by(*)(k,—B)
and especially for the link,— 8= —(k,— ). Thus, one can
fix the parametersk(,k,) in that domain and track the
steady state from a region of small signal gailtwhere the
fixed point is stable without feedbato the region of large
signal gain. The tracking procedure will be considered in
Sec. VII.

VIl. TRACKING THE STEADY STATE

We have verified numerically the linear control theory by
integrating the system of nonlinear differential equati@@®)s
We applied the fourth-order Runge-Kutta metHdd] with
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0 L, . FIG. 11. The bifurcation diagram of the system for the mode
000 005 010 015 020 configuration (1,2) obtained in the absence of the feedback signal.
t(ms) The minima of intensityS, are plotted vs the signal gaim. The

thick solid line indicates the stabilized steady state obtained by the
tracking procedure. The values of the parameterska#€l0, k, =

FIG. 10. The dynamics of the total intensi8~=S,+ S, of the 8.6, Uy =10, andw,=0.01.

infrared light for proportional feedback control determined by the
numerical solution of Eqs(2). The mode configuration is (1,2).
The parameter values arey=20, k=10, k,=—8.6, S,?:IX
~7,539, SS:2|y~2><7.979, andu,,=10. (a) and(b) correspond

to initial conditions chosen close and far away from the steady-stat
solution, respectively.

mode configuration (1,2). The solid line corresponds to the
stabilized steady state. The points describe the bifurcation
diagram of the uncontrolled system. They show an evolution
of the minima of theS, signal under the increase ¢f In the
absence of the feedback signal, the system experiences peri-

the fixed time sten=0.02. The numerical analysis shows odic as well as chaotic oscillations. The tra_lcklng procedure
allows us to keep the system on the originally unstable

that the linear theory correctly predicts the stability domainsstead state for an arbitrarilv large sianal gainin order to
for different control strategies. Figure 10 illustrates an X~ ke gur simulations as a rxoregaccgrategaadl roach to a real
ample of the system dynamics, time series of the total inten- bp

sity S=S,+S, of the infrared light, in the case of propor- experimental situation, we have applied a slightly modified

tional feedback control for the mode configuration (1,2) andaroportlonal f_eedback method.2]. A IOW'pE.iSS filter was .
. N incorporated in the feedback loop, to provide an automatic
the signal gainy=20. The control parametersky,k,)

. search of the steady-state vall@sand S that are required
=(10,-8.6) are chosen on the ling—g=—(k,—B). To y l@s S q

- ; . for the original proportional feedback technique. The filter
2;2'% éaerr?(? evs?i:ﬁgdorntr;ﬁ efigﬁgv?/?: gs\g;; I |t:|r:;| Eeurtu\c\klji;non produces an additional degree of freedom defined by the dif-
. m

: . X rential ion
Uy, representing some predetermined maximum value, thge ential equatio

perturbation has been calculated from E2f). Whenu ex- 7' = we(KS+ Ky, ~ 2) (36)
. .. c X y ]
ceeded the maximumug,) or minimum value ¢u,,), we
ascribed it touy, or —uy,, respectively. where w,=0.01 gives the characteristic cutoff frequency.

The asymptotic dynamics essentially depends on the iniThe output of the filter is taken as the feedback signal
tial conditions. If the initial conditions are close to the fixed
point, the feedback perturbation stabilizes the steady state u=Kk,S,+k,S,—z (37
[Fig. 10a)]. If the perturbation is switched on, when the . .
initial conditions lie on the strange attractor of the uncon-The filter tends to adapt thevariable to the steady state of
trolled system, the perturbation cannot stabilize the stead{e systemz=k,S+k,S). At w,—0 the present method
state[Fig. 10b)]. This is because the trajectories belongingbecomes close to the conventional proportional feedback
to the strange attractor are far away from the fixed point andechnique with the obvious advantage that it does not require
the fixed point has only a finite domain of attraction in phaseknowledge of the steady-state vallﬁéfsandsyo [12]. Due to
space. its adaptive features, our technique can be successfully ap-
In order to overcome that problem, one can use the trackplied, even in the case of a slow drift of the system param-
ing procedure. Here, we switch on the feedback perturbatioeters.
at a low signal gainy corresponding to a stable steady state Note that the linear analysis of the system presented in
of the unperturbed system and then increase it slowly to &ecs. IV, V, and VI is performed under the assumption of
desired level. If the rate of varying is slower than a char- identical parameters of the different modes. As a conse-
acteristic transient rate of the steady state, the system adiguence, we have been able to simplify the stability problem
batically follows the changes of by remaining inside the by separately looking at the dynamics of the sispands,
stability regime of the steady state. Due to the existence oind the dynamics of the system in the subspace
the universal(for any y) stability domain in the K, k) (Sx.,Sy Sy ,s)’,)=0. The identity of the modes is responsible
plane, the parameteks andk,, can be fixed during the track- for the degeneration of the eigenvalues of the fixed point. In
ing procedure. real laser systems, however, the parameters of the modes are
Figure 11 illustrates the tracking of the steady state for theslightly different. These circumstances destroy the symmetry
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25+

FIG. 12. The same as in Fig. 11, but the parameters of the
modes are not identical. The factpr, is scattered randomly by
20% around the constant valugs;{=g andu;,=1—g for parallel
modes and otherwise, respectivelgken in the previous consider- p
ation.

FIG. 13. (a) The minima of the intensitys, and (b) stabilized
of the system and abolish the degeneration of the eigenvaintensitiesl as a function of the pump rafefor the mode configu-
ues. The question arises, how sensitive is the stabilizatioration (2,2) at different values of the signal gaip;=0.85, v,
procedure with regard to a small scattering of the mode pa=0.9, y;=0.95, andy,=1. The thick solid linga) corresponds to
rameters. To answer that question we have analyzed thee stabilized steady state obtained by the tracking procedure. The
problem numerically. Figure 12 displays the bifurcation dia-insert(b) shows an enlarged region close to the origin.
gram and the steady state stabilized by the tracking proce-
dure in the case of a randomly scattered fagigy. Any In order to prevent spurious stable steady states that may
difference between the mode parameters leads to a mostem from a finite-precision arithmetic, small noise was
complicated bifurcation diagram compared to that presenteddded to the system during our simulations. Uncorrelated
in Fig. 12. There are more chaotic and high-periodic statesandom numbers uniformly distributed inside the interval
compared to the case of identical modes, however, the track9,a,,] with a,=10 ' have been added to the intensitigst
ing procedure still works. Stabilization of the steady state isevery step of the numerical integration. The tracking proce-
possible even for a rather large scattering of the fapter  dure still worked, when the noise amplitudg was enlarged
reaching 50%. Similar results have been observed upon scatp to 10 4. This finding clearly shows that the feedback
tering other parameters of the modes. So far, the results afignal can maintain the stability of the steady state, even in
Secs. IV, V, and VI are only weakly sensitive to a smallthe presence of rather large noise.
scattering of the mode parameters.

In Secs. V and VI, we have demonstrated that the sym-
metric mode configurations n{=n) are uncontrollable.
However, they may become controllable, if we take into ac- The theoretical analysis of the multimode, intracavity-
count the nonidentity of the mode parameters. The lineatdoubled Nd:YAG laser uncovers that unwanted chaotic re-
analysis in Secs. V and VI has been performed for fixedgimes can be successfully stabilized by modulating the laser
numbersm andn. In a real experimental situation, the num- pump rate with the feedback signal composed of two experi-
ber of modes changes with increasing the pump rate. This imentally available quantities, namely, the total intensities of
because the different modes have different signal gairl  the infrared light polarized in two different orthogonal direc-
model that finding, we simply have replacedy py, in Eq.  tions. Our analysis is based on the model consideration of
(2), wherep describes the pump rate. For the initial mode2(m+n) coupled rate equations for the intensities and gains
configuration (2,2) and different values ¢f, the bifurca- of m modes polarized in th¥ direction andn modes polar-
tion diagram of the system as a function of the pump pate ized in theY direction. The stability of the steady state
is shown in Fig. 18). The solid curve corresponds to the mainly derives from a closed system of two second-order
stabilized steady state attained by the tracking procedureoupled linear differential equations for the total intensities
Figure 13b) illustrates the dependence of the stabilized in-s, ands, that splits off from the original linearized system of
dividual mode intensities on the pump rgtd ; andl, relate  the model equations. Due to this fact, the total intenskies
to the X polarization,|; and |, to the Y polarization. With  ands, are efficient feedback parameters, capable to control
increasingp, there first appear th&-polarized modes that the stability of the fixed point.
have larger signal gainsyg=1, y3=0.95) and later the We have analyzed different strategies based on propor-
X-polarized modes having smaller gainsy,E€0.9, y;  tional feedback control, derivative control, and combined
=0.85). For moderate values pf all four modes coexist in  control. In appropriate parameter spaces, we determined the
a stable state. A subsequent increase of the pumpiateds  stability domains of the steady state. The proportional feed-
to the death of the modg. That mode has the smallest gain, back control turns out to be most convenient for experimen-
and it loses the concurrence with other modes. tal applications. For this control strategy, we derived ap-

VIIl. CONCLUSIONS
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proximate analytical conditions of stability. of the parameters of different modes as well as the influence
The linear control theory has been verified numerically byof noise. Our theoretical analysis strongly proves that the
simulating the original model of 2t+n) nonlinear coupled above chaos control method is applicable to a real-world
differential equations. Therefore, it follows that the fixed laser experiment.
point of the controlled system has only a finite domain of
attraction. The trajectories lying on the strange attractor of
the system are far away from the fixed point and, hence,
cannot be stabilized by simply switching on the feedback The authors would like to thank H. Kantz, E. Sinde, U.
perturbation. Stabilization of the system, however, can béreRler, A. Schenck zu Schweinsberg, M.riBer, W. Just,
attained via the tracking procedure. We have analyzed and R. Meitzner for fruitful collaborations. The present work
modified proportional feedback technique that incorporates was supported financially by the Max-Planck-Gesellschaft
low-pass filter into the feedback loop, in order to provide anand the Bundesministerium rflBildung, Wissenschaft, For-
automatic adjustment to the position of the fixed point. Weschung und TechnologigBMBF) under Contract No.
also have investigated numerically the influence of scatterind3N7036.
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