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Stabilization of an unstable steady state in intracavity frequency-doubled lasers

K. Pyragas,1,2,* F. Lange,1 T. Letz,1 J. Parisi,1 and A. Kittel1
1Department of Energy and Semiconductor Research, Faculty of Physics, University of Oldenburg, D-26111 Oldenburg

2Semiconductor Physics Institute, LT-2600 Vilnius, Lithuania
~Received 30 March 1999; revised manuscript received 17 December 1999!

We predict theoretically that it is possible to stabilize the steady state in multimode, intracavity doubled,
diode pumped Nd:YAG~neodymium-doped yttrium aluminum garnet! lasers using two output signals, namely,
the sum intensities of the infrared laser modes polarized in two different orthogonal directions (X andY) and
one feedback input parameter, the pump rate. The stabilization is possible for arbitrarily large numbers of
modes polarized in theX andY direction. Different strategies of stabilization based on proportional feedback,
derivative control, and their combination are discussed. The analytical and numerical results of the linear
control theory are illustrated with numerical simulations of the underlying nonlinear differential equations. We
show that one can maintain the stable steady state of the laser output for an arbitrarily large pump rate by
taking advantage of a tracking procedure.

PACS number~s!: 05.45.Gg
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I. INTRODUCTION

We consider a novel approach to the ‘‘green problem
present in the operation of intracavity frequency-doub
Nd:YAG ~neodymium-doped yttrium aluminum garnet! la-
sers. The Nd:YAG lasers normally emit light at the fund
mental wavelength of 1064 nm in the infrared spectral ran
By the help of a nonlinear optical crystal such as KTP~po-
tassium titanyl phosphate!, one can convert the infrared las
radiation into visible green light~with a wavelength of 532
nm! by the process of second harmonic and sum freque
generation. To obtain the maximum green light output~the
intensity of green light produced by the KTP crystal is pr
portional to the square of the intensity of the fundamen
wavelength!, the KTP crystal is placed inside the laser ca
ity. This, however, causes a pronounced dynamical insta
ity in the laser performance. The sum frequency genera
provides a nonlinear loss mechanism in the laser dynam
that globally couples the infrared cavity modes, i.e., ea
infrared cavity mode is coupled to all others. As a result,
output intensity can exhibit periodic and chaotic oscillatio

Such an instability has originally been observed and a
lyzed by Baer@1#. He developed a deterministic rate equ
tion model, in order to explain the above phenomenon
detailed linear stability analysis of Baer’s equations was p
formed by Mandel and Wu@2#. One significant advance wa
made by Oka and Kubota@3# who recognized that the polar
ization of the cavity modes plays a critical role in the las
dynamics and, therefore, used an intracavity quarter-w
plate to stabilize the laser output. Their theoretical analy
however, was limited to a model that only includes two o
thogonally polarized cavity modes. Jameset al. @4# and
Bracikowski and Roy@5# have generalized this model for th
case of multiple longitudinal modes. They took into accou
the birefringence of the YAG crystal and have shown that
modes can exist only in two orthogonal directions of pol
ization, say, inX and Y directions. Form and n modes po-
larized inX andY directions, respectively, this model repr

*Electronic address: pyragas@kes0.pfi.lt
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sents a set of 2(m1n) nonlinear coupled rate equations fo
the mode intensities and gains. The model has success
predicted the existence of antiphase dynamical states, en
sharing of chaotic polarization modes of the laser, and a
the possibility of obtaining stable operation by adjusting t
optical axes of the KTP and YAG crystals to a certain an
@5#. Our analysis in the present paper is completely based
that model.

Note that Liuet al. @6# have recently developed a mor
sophisticated model of the laser system that includes both
amplitudes and phases of the electric fields of the infra
light. The previous model@5# is a simplification of this one
and can be derived from it by omitting the equations for t
phases. Liuet al. @6# have shown that the dynamics of th
phases can be important in the case that all modes are p
ized in the same direction, when the cavity loss due to
emitted green light is extremely small. Because we cons
the case of a nonvanishing number of modes in both
thogonal directions and, furthermore, we are interested
high output powers of the green light, we believe that, in o
case, the dynamics of the phases does not have a cr
influence.

The main goal of our paper is to show that the laser out
can be stabilized by feeding back to the pump rate an amo
of the output signal composed of two total intensities of t
infrared light polarized in two different orthogonal direc
tions. The underlying idea follows from the linear analysis
the system equations in the vicinity of the fixed point. It
based on the observation that the equations for the tota
tensities polarized inX andY directions breaks off from the
total system of 2(m1n) linear equations describing the dy
namics of the individual modes. The problem of the stabil
of the fixed point reduces to the problem of the stability
the total intensities. The latter is described by a closed s
tem of four linear differential equations. Thus, by feedi
back the total intensities, one can effectively control the s
bility of the steady state. It is possible to achieve and ma
tain stability for arbitrarily large numbersm and n. For the
multimode regime, this is a surprising result, since the s
tem produces hyperchaotic oscillations with multiple po
3721 © 2000 The American Physical Society
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3722 PRE 61PYRAGAS, LANGE, LETZ, PARISI, AND KITTEL
tive Lyapunov exponents@7#. Stabilization of the fixed point
with a single feedback parameter is still possible due to
fact that the fixed point has only two unstable directio
even for a large pump rate, i.e., the fixed point is less
stable than the global strange attractor of the system.

The work of Colet, Roy, and Wiesenfeld@7# was also
devoted to a numerical control of chaos in this model. Th
used the method of occasional proportional feedback@8#, in
order to stabilize unstable periodic orbits embedded in
chaotic attractor. Another associated work on control
chaos in laser systems was performed by Bielawskiet al. @9#
who managed to stabilize experimentally an unstable ste
state in a fiber two-level class B laser.

Our paper is organized as follows. Section II contains
description of the model, the characteristic values of the
rameters used in numerical analysis and the model equa
in a dimensionless form. In Secs. III and IV, we analyze
steady-state solution of the system and its linear stabi
respectively. Section V is devoted to the linear control the
of the steady state. We consider various control strate
based on proportional feedback, derivative control, and t
combinations. In the appropriate parameter spaces, we
merically obtain domains of the stable laser operation. S
tion VI gives an analytical estimation of the parameter valu
corresponding to the stabilized steady state in the cas
proportional feedback control. In Sec. VII, we describe t
results of numerical integration of the underlying nonline
differential equations that confirm the validity of the line
control theory. We discuss a tracking procedure that allo
us to maintain the stable steady state for an arbitrarily la
pump rate. We finish our paper with conclusions presente
Sec. VIII.

II. MODEL

The dynamics of a multimode Nd:YAG laser with
frequency-doubling KTP crystal located inside the cavity c
be described in terms of the rate equations for the intensitI k
and gainGk associated with each mode@5#,

tc

dIk

dt
5S Gk2ak2geI k22e(

j Þk
m jkI j D I k , ~1a!

t f

dGk

dt
5G1U~ t !2S 11I k1b(

j Þk
I j DGk . ~1b!

Here, k51, . . . ,m and k5m11, . . . ,m1n correspond to
the modes polarized inX and Y directions, respectively.tc
means the cavity round trip time andt f the fluorescence
lifetime of the Nd31 ion. ak is the cavity loss parameter fo
the kth mode.b denotes the cross-saturation parameter
lated to the competition among the different longitudin
modes and is taken to be the same for all mode pairs.
nonlinear coefficiente is associated with the conversion e
ficiency of the intensity of the infrared intensity into gree
light converted by the KTP crystal.g gives a geometrica
factor that depends on the phase delay due to the YAG
KTP crystals as well as on the angle between the YAG
KTP fast axes. The factorm jk accounts for the change i
geometry when the modesj and k have different polariza-
tions. If the modes have the same polarizationm jk5g, oth-
e
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erwise m jk512g. This factor determines the relativ
amount of green light produced by second harmonic vs s
frequency generation for different polarization configuratio
of the laser modes.G is a small signal gain related to th
pump rate; we consider it as a main control parameter of
system.U(t) is a time-dependent feedback signal introduc
to control the stability of the steady state and is experim
tally easy to feed back into the system. An explicit expre
sion for that signal will be presented in Sec. V.

In our numerical analysis, we take the same values of
parameters as in the Refs.@5,7#: tc50.2 ns, t f5240 ms,
ak50.01 for all k51, . . . ,m1n,b50.7, e5531026, g
50.1. In analytical estimations, we suppose that the par
eters can vary, however, their orders remain unchanged

Equations ~1! contain variables and parameters who
magnitude differ from each other by several orders a
which have rather different characteristic time scales.
overcome that inconvenience, we rewrite the equations
dimensionless form:

I k85@Dk1«~gIk22Mk!#I k , ~2a!

Dk85g1u2@11~12b!I k1b~Sx1Sy!#~11hDk!.
~2b!

The new variables and parameters are defined as follow

Dk5
Gk2a

G
, q5

t

T
, T5At ftc

a
, G5Aatc

t f
,

~3!

«5eA t f

atc
, h5A tc

at f
, u5

U

a
, g5

G

a
, ~4!

Mk[(
j Þk

m jkI j1gIk5gSx1~12g!Sy for k51, . . . ,m,

5gSy1~12g!Sx for k5m11, . . . ,m1n, ~5!

Sx5(
j 51

m

I j , Sy5 (
j 5m11

m1n

I j . ~6!

I k8 andDk8 in Eqs.~2! denote the time derivative of the co
responding variables with respect to the dimensionless t
q, I k85dIk /dq andDk85dDk /dq. For the given values of
the parameters, the characteristic time scaleT is approxi-
mately 2.19 ms. The variableDk describes the deviation o
the gainGk from the cavity lossa normalized to the char-
acteristic scaleG'0.9131024. The characteristic values o
the dimensionless conversion efficiency« and the square
root of the ratio between the inversion and the cavity de
rate h defined in Eq.~4! are «'5.4831022 and h'9.32
31023. The parametersg andu are the dimensionless signa
gain and feedback signal, respectively, normalized to
cavity lossa. Sx andSy are the total intensities of the infra
red light polarized inX andY directions, respectively. Thes
parameters are available from experimental measureme
We use them as the feedback variables, in order to stab
the intensity of the laser.

The variables of Eqs.~2! change in characteristic interva
of the order of unity, and their characteristic time scale
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also of the order of unity. Thus, the above dimensionl
form is well suited for numerical as well as analytical ana
sis.

III. STEADY-STATE SOLUTION

Let us consider the steady-state solutions~fixed points! of
Eqs. ~2! in the absence of the feedback signalu50. These
solutions are defined by the conditionsI k850, Dk850, for all
k51, . . . ,m1n. The system has multiple fixed point
However, here we do not consider the points for which
intensities of some modes vanish (I k50 for somek). We
restrict our treatment to the symmetrical fixed point f
which the intensities and gains among all modes polarize
X and Y directions are identical:

I k[I x , Dk[Dx , k51, . . . ,m, ~7a!

I k[I y , Dk[Dy , k5m11, . . . ,m1n. ~7b!

This fixed point is most important, since it provides t
maximum intensity of the green light. Substituting Eqs.~7!
into Eqs.~2!, we obtain four algebraic equations,

Dx2«@~2m21!gIx12n~12g!I y#50, ~8a!

Dy2«@~2n21!gIy12m~12g!I x#50, ~8b!

g2$11@11~m21!b#I x1bnIy%~11hDx!50, ~8c!

g2$11@11~n21!b#I y1bmIx%~11hDy!50 ~8d!

for four unknown quantities (I x ,Dx ,I y ,Dy). Taking into ac-
count the smallness of the two parameters« and h («,h
!1), one can obtain an approximate analytical solution

I x5I 1O2~«,h!, ~9a!

I y5I 1O2~«,h!, ~9b!

Dx5«@~2m21!g12n~12g!#I 1O3~«,h!, ~9c!

Dy5«@~2n21!g12m~12g!#I 1O3~«,h!, ~9d!

where

I 5
g21

11b~m1n21!
~10!

andOn(«,h) denotes thenth order corrections with respec
to the small parameters« and h. A more accurate solution
can be obtained numerically by an iteration procedure.
start from the solutionI x5I y5I , substitute them in Eqs.~8a!
and~8b!, and obtain the values ofDx andDy . We feed these
values in Eqs.~8c! and~8d! and solve the linear system wit
respect toI x andI y . We again put these new values ofI x and
I y into Eqs.~8a! and ~8b! and repeat the procedure until a
variables converge to the fixed values with a predetermi
accuracy. Our algorithm provides a fast convergence to
desired steady-state solution.

The dependence of the steady-state solutions on the s
gaing obtained from the analytical Eqs.~9! and the iteration
procedure of Eqs.~8! for the mode configuration (m,n)
s
-

e
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e

d
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5(1,2) are shown in Fig. 1. The analytical estimation@Eqs.
~9!# gives a good approximation for the numerical solution
the equation without approximation.

IV. STABILITY OF THE STEADY STATE

Now, we consider the stability of the steady-state so
tion. Note that for two specific cases of mode configurat
(mÞ0,n50) and (m5n), a similar analysis has been pe
formed in Refs.@4,5#. Here, we consider the general case
an arbitrary mode configuration. The linear stability of t
steady state is defined by small deviations from the fix
point,

~ i k ,dk!5~ I k2I k
0 ,Dk2Dk

0!, ~11!

where (I k
0 ,Dk

0) is the steady-state solution defined by Eq
~8!: (I k

0 ,Dk
0)5(I x ,Dx) for k51, . . . ,m and (I k

0 ,Dk
0)

5(I y ,Dy) for k5m11, . . . ,m1n. Substituting Eq.~11! in
Eqs.~2! and performing the standard linearization procedu
one obtains the set of linear equations for small deviati
( i k ,dk) defining the stability of the fixed point. By excludin
the variabledk , these equations transform to the form

i k91bxi k81cxi k1 f x5I xdu, k51, . . . ,m, ~12a!

i k91byi k81cyi k1 f y5I ydu, k5m11, . . . ,m1n,
~12b!

wheredu is the linearized feedback signal. The coefficien
bx andcx in Eq. ~12a! are

bx5
hg

11hDx
2«gIx , ~13a!

FIG. 1. The steady-state solution of the system@Eqs.~2!# for the
mode configuration (m,n)5(1,2). ~a! Total mode intensities of the
infrared light polarized inX and Y directions,I x and I y , respec-
tively, and~b! corresponding normalized mode gainsDx andDy as
a function of the signal gaing related to the laser pump rate~con-
sidered as the main control parameter!. The solid curves display the
numerical solutions@Eqs.~8!#, the dashed curves the analytical s
lutions of an approximation@Eqs.~9!#.
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cx5F ~12b!~11hDx!2
«hgg

11hDx
G I x , ~13b!

and f x is a linear homogeneous function of the variab
sx , sy and their time derivatives

f x5b~11hDx!I x~sx1sy!1
2«hg

11hDx
I x@gsx1~12g!sy#

12«I x@gsx81~12g!sy8 ,#, ~14!

wheresx andsy define the deviation of the sum intensities

sx5(
j 51

m

i j , sy5 (
j 5m11

m1n

i j . ~15!

The expressions for the coefficientsby andcy in Eq. ~12b!
can be obtained from Eqs.~13a! and ~13b!, respectively, by
replacing the subscriptx by y. The functionf y results from
Eq. ~14! by interchanging the subscriptx andy.

The coefficientsax , bx , ay , andby in Eqs. ~12! are in-
dependent of the indexk, as well asf x and f y are linear
functions of the sumssx andsy . These features allow us t
derive the closed system of equations for the sumssx andsy .
Those equations are simply extracted by summing Eq.~12a!
through all X modes~from k51 to k5m) and Eq.~12b!
through allY modes~from k5m11 to k5m1n):

sx91bxsx81cxsx1m fx5mIxdu, ~16a!

sy91bysy81cysy1n fy5nIydu. ~16b!

Taking into account the expressions forf x @Eq. ~14!# and f y ,
Eqs.~16! can be rewritten in a more convenient form,

sx91Bxsx81Cxsx1Exsy81Fxsy5mIxdu, ~17a!

sy91Bysy81Cysy1Eysx81Fysx5nIydu. ~17b!

The coefficientsBx , Cx , Ex , andFx in Eq. ~17a! are

Bx5
hg

11hDx
1«g~2m21!I x , ~18a!

Cx5H @11~m21!b#~11hDx!1~2m21!
«hgg

11hDx
J I x ,

~18b!

Ex52«~12g!mIx , ~18c!

Fx5Fb~11hDx!12~12g!
«hgg

11hDx
GmIx . ~18d!

The expressions for the coefficientsBy , Cy , Ey , andFy
in Eq. ~17b! are obtained from Eqs.~18a!, ~18b!, ~18c!, and
~18d!, respectively, by replacing the subscriptx by y and the
numberm by n.

In this section, we consider the problem of stability of t
steady state in the absence of the feedback signaldu50. In
this case, the right-hand side~rhs! of Eqs.~12! and ~17! are
zeros. The problem of stability is completely defined by E
~12! that describe the dynamics of small perturbations in
s

.
n

R2(m1n) dimensional phase space defined by the variab
( i 1 , . . . ,i m1n ,i 18 , . . . ,i m1n8 ). The origin of this space is
stable, if the real parts of all 2(m1n) eigenvalues of Eqs
~12! are negative. For a large number of modes, the eig
value problem for the system~12! is not a trivial one. How-
ever, it can be essentially simplified due to the fact that,
the sumssx andsy , it is possible to split off Eqs.~17! from
the total system of Eqs.~12!.

The problem can be divided into two much more simp
ones. The first consists of the analysis of Eqs.~17! for the
sumssx andsy . The origin (sx ,sy ,sx8 ,sy8)50 of these equa-
tions defines some subspaceR2(m1n)24 in the original phase
spaceR2(m1n), R2(m1n)24,R2(m1n). The stability of this
subspace is determined by four eigenvalues (L i , i
51, . . . ,4) ofEqs. ~17!. Obviously, these four eigenvalue
are the eigenvalues of the original Eqs.~12! as well. The
second problem consists of determining the remaining 2m
1n)24 eigenvaluesl i ,i 51, . . . ,2(m1n)24 of Eqs.~12!
that define the stability of the trajectories inside the subsp
(sx ,sy ,sx8 ,sy8)50. In this subspace,f x5 f y50 and Eqs.~12!
transform to

i k91bxi k81cxi k50, k51, . . . ,m, ~19a!

i k91byi k81cyi k50, k5m11, . . . ,m1n. ~19b!

The system of Eqs.~12! splits into a set of 2(m1n) inde-
pendent equations. There arem identical Eqs.~19a! for theX
polarization andn identical Eqs.~19b! for theY polarization.
As a result, system~19! has only four different eigenvalues
two of them,l (1,2)

(x) , correspond to theX polarization and the
other two, l (1,2)

(y) , to the Y polarization. Thus, for a large
number of modes, the eigenvalues of the original system~12!
are highly degenerated. For anym.1 andn.1, the system
has only eight different eigenvalues, four of them are defin
by Eqs.~17! and the remaining four by Eqs.~19!. Now we
discuss the above two problems in detail.

Let us start with the first problem, i.e., consider the s
bility of Eqs. ~17!. The eigenvaluesL i of this system are
determined by the characteristic equation

detS L21BxL1Cx ExL1Fx

EyL1Fy L21ByL1Cy
D 50 ~20!

that represents the fourth-order polynomial

L41a1L31a2L21a3L1a450, ~21!

where

a15Bx1By , ~22a!

a25Cx1Cy1BxBy2ExEy , ~22b!

a35ByCx1BxCy2EyFx2ExFy , ~22c!

a45CxCy2FxFy . ~22d!

The origin of system~17! is stable, if the real parts of al
roots of the polynomial~21! are negative. The numerica
solution of Eq.~21! is illustrated in Fig. 2~a!. The depen-
dence of the eigenvaluesL i on the signal gaing for the
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mode configuration (m,n)5(1,2) is shown in the complex
plane. Atg5gc'1.22, the real part of two complex conju
gated eigenvalues becomes positive. The fixed point lose
stability through a Hopf bifurcation. Two other complex co
jugated eigenvalues have a negative real part for anyg.

Next, we consider the second problem, the stability of
trajectories in the subspace (sx ,sy ,sx8 ,sy8)50. That problem
is defined by Eqs.~19!. The four different eigenvaluesl i are
obtained from the two characteristic equationsl21bxl
1cx50 andl21byl1cy50 that can be solved explicitly:

l1,2
(x)52

bx

2
6Abx

2

4
2cx, ~23a!

l1,2
(y)52

by

2
6Aby

2

4
2cy. ~23b!

The real parts of these eigenvalues are negative at the
ditions

cx.0, cy.0, bx.0, by.0. ~24!

Let us evaluate these inequalities for the case of a vanis
conversion efficiency and vanishing ratio between the inv
sion and cavity relaxation rate («,h→0). We havecx'cy
'(12b)I andbx'by'hg2«gI. Thus,cx andcy are posi-
tive, if b,1 and bx and by are positive~for g@1), if g
,h/«@11b(m1n21)#. For the given values of the param
eters, these conditions are fulfilled and, hence, the syste
stable in the subspace (sx ,sy ,sx8 ,sy8)50.

Figure 2~b! illustrates the dependence of the eigenvalu
l1,2

(y) on g for the mode configuration (1,2). As it is expecte
the real parts of these eigenvalues are negative for all va

FIG. 2. Evolution of eigenvalues of the fixed point in the com
plex plane, when the signal gaing is increased from 1 to 50 with
the step 0.5. The arrows show directions corresponding to the
crease ofg. The mode configuration is (1,2).~a! Eigenvalues de-
fined by Eqs.~21!. ~b! Eigenvalues defined by Eqs.~23!. The insert
in ~a! shows an enlarged region close to the origin. Hereg is in-
creased from 1 to 1.5 with the step 0.005.
its

e
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of g. Note that, for this mode configuration, the system h
only one pair of complex conjugated eigenvalues (l1,2

(y)) cor-
responding to the subspace (sx ,sy ,sx8 ,sy8)50. For m51,
Eq. ~19a! is automatically satisfied, since we havesx[ i 1 and
sx50 in the subspace. The total number of eigenvalues
this case is six; four of them are defined by Eqs.~17! and two
by Eq. ~19b!.

For any mode configuration (m,n), the evolution of the
eigenvalues in the complex plane is similar to that presen
in Fig. 2. Figure 3 shows such an evolution for the mo
configuration (2,4). The only difference is that the numb
of different eigenvalues in the subspace (sx ,sy ,sx8 ,sy8)50 is
now four. They all have negative real parts. Again, only tw
eigenvalues corresponding to the dynamics of the sumsx
and sy @Eqs. ~17!# become positive wheng exceeds some
threshold value. Note that the total number of eigenvalue
this case is 12 and only eight of them are different. T
means that the eigenvalues corresponding to the subs
(sx ,sy ,sx8 ,sy8)50 are degenerated.

In conclusion of this section, we emphasize an import
feature discovered in our analysis. For any mode configu
tion (m,n), the unstable fixed point has only two unstab
eigenvalues, even for a large signal gaing. These eigenval-
ues correspond to the dynamics of the sum intensitiessx and
sy , and, hence, they should be effectively controlled by fe
ing back into the system a signal composed of these inte
ties. We consider that control procedure in the next sect

V. LINEAR CONTROL THEORY

Now, we analyze the stability of the steady state in t
case of a nonvanishing feedback signal,duÞ0. We combine
this signal from the sum intensitiesSx andSy @Eq. ~6!# of the
infrared light polarized in two orthogonal directions,X and
Y, respectively. These intensities are available from exp
mental observation. The feedback signal does not hav
change the position of the fixed point. We look at the fo
lowing general form of the feedback signal satisfying t
above main requirement:

n-

FIG. 3. The same as in Fig. 2 but for the mode configurat
(2,4).
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U5Kx~Sx2Sx
0!1Ky~Sy2Sy

0!1Dx

dSx

dt
1Dy

dSy

dt
,

~25!

whereKx , Ky , Dx , andDy are the feedback gain coeffi
cients,Sx

05mIx and Sy
05nIy the steady-state values of th

sum intensities. In the dimensionless form@Eq. ~2!#, the
feedback signal is

u5kx~Sx2Sx
0!1ky~Sy2Sy

0!1dxSx81dySy8 , ~26!

where kx5Kx /a, ky5Ky /a, dx5Dx /Ta, and dy
5Dy /Ta. Linearization of Eq.~26! in the vicinity of the
fixed point leads to

du5kxsx1kysy1dxsx81dysy8 . ~27!

Next, we reconsider Eqs.~12! and ~17! by taking into
account Eq.~27!. We first note that Eqs.~19! that describe
the stability of the trajectories in the subspa
(sx ,sy ,sx8 ,sy8)50 remain unchanged in the presence of
feedback signal~27!. This holds because the feedback sign
~27! is a linear homogeneous function of the variab
(sx ,sy ,sx8 ,sy8), and it vanishes in the subspac
(sx ,sy ,sx8 ,sy8)50. Thus, the feedback signal does n
change the eigenvalues~23! associated with the stability o
the trajectories in the subspace (sx ,sy ,sx8 ,sy8)50. The tra-
jectories in the subspace are stable in the absence o
feedback signal, and, hence, they remain stable in the p
ence of the feedback signal~27!. The feedback only influ-
ences the eigenvaluesL i associated with Eqs.~17! that de-
scribe the stability of the sumssx andsy .

In the presence of the feedback signal~27!, Eqs.~17! take
the form

sx91B̃xsx81C̃xsx1Ẽxsy81F̃xsy50, ~28a!

sy91B̃ysy81C̃ysy1Ẽysx81F̃ysx50, ~28b!

where

B̃x5Bx2dxmIx , ~29a!

C̃x5Cx2kxmIx , ~29b!

Ẽx5Ex2dymIx , ~29c!

F̃x5Fx2kymIx . ~29d!

The expressions for the coefficientsB̃y , C̃y , Ẽy , andF̃y in
Eq. ~28b! are obtained from Eqs.~29a!, ~29b!, ~29c!, and
~29d!, respectively, via replacing the subscriptx by y and the
numberm by n.

The characteristic equation of the system~28! is defined
by the polynomial

L41ã1L31ã2L21ã3L1ã450, ~30!

where

ã15B̃x1B̃y , ~31a!
e
l
s

t

he
s-

ã25C̃x1C̃y1B̃xB̃y2ẼxẼy , ~31b!

ã35B̃yC̃x1B̃xC̃y2ẼyF̃x2ẼxF̃y , ~31c!

ã45C̃xC̃y2F̃xF̃y . ~31d!

We use the Hurwitz criterion@10#, in order to analyze the
stability of the system under control. According to that c
terion, all roots of the fourth-order polynomial~30! have
negative real parts, if there are satisfied the four inequali

ã1.0, ã3.0, ã4.0, ã3~ ã1ã22ã3!2ã4ã1
2.0.

~32!

For different control strategies, we have checked these
equalities numerically. The feedback signal~27! depends on
four parameters (kx ,ky ,dx ,dy) that define a four-
dimensional control vector in a suitable parameter space.
restricted our consideration to three different types of
two-parameter control~i.e., two of four components in the
control vector were taken to be zeros!, namely,~a! the pro-
portional feedback control (kx ,ky ,0,0), ~b! the derivative
control (0,0,dx ,dy), and ~c! the combined control
(kx ,0,dx ,0) or (0,ky ,0,dy) by using only one output ofX- or
Y-polarized infrared light. Below, we discuss the results
the numerical analysis obtained for these different con
strategies.

~a! The results of proportional feedback control for th
mode configuration (1,2) are shown in Fig. 4. In the plane
the feedback parameters (kx ,ky), the domains of stability are
shown for different values of the signal gaing. The darker
regions correspond to the largerg. With increasingg, the
relative area of the stability domain decreases, howeve
remains infinitely large for any largeg. To stabilize the sys-
tem, the feedback has to be positive (kx.0) for theX polar-
ization ~there is only one mode in this direction,m51) and
negative (ky,0) for theY polarization~there are two modes
in this direction,n52). In other words, the feedback has

FIG. 4. The domains of stability in the (kx ,ky) parameter plane
obtained for proportional feedback control at different values of
signal gaing ~1.4, 2, 50!. The darker regions correspond to th
larger values ofg. The lines indicate the domain boundaries, an
lytically estimated in Sec. VI@Eq. ~35!#. The mode configuration is
(1,2).
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try to restore the symmetry in the asymmetric distribution
the outputs in theX and Y directions; it has to increase th
output intensity in the direction where the number of mod
is small and decrease the output intensity in the direc
where the number of modes is large. Such an observa
seems to be general for any mode configuration (m,n). For
any m,n, the domain of stability is basically located in th
region kx.0, ky,0. In the symmetrical casem5n, there
remains no domain of stability. Figure 5 shows the dep
dence of the stability domain on the mode configurat
(m,n). Here,n is fixed equal to 4 andm is varied from 1 to
4. With increasingm, the stability domain decreases an
finally, disappears whenm5n54. Thus only asymmetric
mode configurations (mÞn) are controllable.

~b! The derivative feedback control is illustrated in Fig.
The domains of stability are shown in the plane of cont
parameters (dx ,dy) for the fixed mode configuration (1,2
and different values of the signal gaing. Here, the darker
regions correspond to the smallerg. With increasingg, the
stability domain moves towards the origin of the (dx ,dy)

FIG. 5. The domains of stability in the (kx ,ky) parameter plane
obtained for proportional feedback control at fixedg550 and dif-
ferent mode configurations (1,4), (2,4), (3,4). The darker regi
correspond to the larger values ofm.

FIG. 6. The domains of stability in the (dx ,dy) parameter plane
obtained for derivative control technique at different values of
signal gaing ~2, 5, 50!. The darker regions correspond to th
smaller values ofg. The mode configuration is (1,2).
f

s
n
on

-
n

,

l

plane. The feedback has to be positive (dx.0) for the X
polarization and negative (dy,0) for theY polarization, as
well as in the case of proportional feedback control.

~c! The combined feedback control strategies (kx ,0,dx ,0)
and (0,ky ,0,dy) for the mode configuration (1,2) and differ
ent values of the signal gaing are illustrated in Figs. 7 and 8
respectively. In both cases, there are only finite area dom
of stability that decrease with increasingg and disappear for
sufficiently largeg. Thus, these control strategies are not
efficient as those considered in~a! and~b!, i.e., control with
two output signals corresponding to different directions
polarization is much more efficient than is the case for c
trol that uses the output of only one direction of polarizatio

Note that none of the above techniques does work for
symmetrical casem5n. In our model, allX modes and allY
modes have identical parameters. In Sec. VII, we show
the symmetrical case can be stabilized if this identity is
stroyed.

s

e

FIG. 7. The domains of stability in the (kx ,dx) parameter plane
obtained for combined control (kx ,0,dx ,0) at different values of
the signal gaing ~5, 20, 50!. The darker regions correspond to th
larger values ofg. The mode configuration is (1,2).

FIG. 8. The domains of stability in the (ky ,dy) parameter plane
obtained for combined control (0,ky ,0,dy) at different values of the
signal gaing ~5, 10, 20!. The darker regions correspond to th
larger values ofg. The mode configuration is (1,2).
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Both the proportional feedback and the derivative con
techniques have infinitely large area domains of stability
the appropriate parameter spaces. However, the deriva
control method may be sensitive to noise, since it requires
experimental differentiation of the output signal. Most a
propriate for experimental applications, therefore, is the p
portional feedback technique. To get more insight into t
method, we perform some analytical estimations in Sec.

VI. ANALYTICAL ESTIMATIONS

In order to find analytical expressions for the boundar
of the stability domain, we evaluate the inequalities~32! in
the limit of «,h→0. Here we restrict our analysis to the ca
of the proportional feedback technique, representing
most promising alternative for experimental applicatio
Similar estimations can be performed for the other meth
as well.

Expanding the parametersã1 , ã3 , ã4, and ã3(ã1ã2

2ã3)2ã4ã1
2 in a power series of the parameters« andh, we

end up with

ã152@gh1«~m1n21!gI#1O3~«,h!, ~33a!

ã35@px
(1)~kx2b!1py

(1)~ky2b!#I 2«1O3~«,h!,
~33b!

ã45@11b~m1n21!2mkx2nky#~12b!I 21O2~«,h!,
~33c!

ã3~ ã1ã22ã3!2ã4ã1
2

52@px
(1)~kx2b!1py

(1)#@px
(2)~kx2b!1py

(2)#I 4«2

1O4~«,h!, ~33d!

where

px
(1)5mF2n2g~4n21!2

hg

«I G , ~34a!

py
(1)5nF2m2g~4m21!2

hg

«I G , ~34b!

px
(2)5mF2n2g~112n22m!1

hg

«I G , ~34c!

py
(2)5nF2m2g~112m22n!1

hg

«I G . ~34d!

According to the conditions~32!, the fixed point is stable if
all four parameters in Eqs.~33! are positive. In approxima
tion of the leading« and h terms all these parameters a
positive, if the following two inequalities are satisfied:

px
(1)~kx2b!1py

(1)~ky2b!.0, ~35a!

px
(2)~kx2b!1py

(2)~ky2b!,0. ~35b!

These inequalities define the stability domain in the (kx ,ky)
parameter plane. The domain is paled by the two lineskx
l
n
ve
n

-
-
t
I.

s

e
.
s

2b5b1(ky2b) andkx2b5b2(ky2b) that cross at the poin
(kx ,ky)5(b,b) and have the slope coefficientsb1

52py
(1)/px

(1) andb252py
(2)/px

(2) . These lines are shown in
Fig. 4 for the mode configuration (1,2) and different valu
of the signal gaing. The lines give a good quantitative est
mation of the domain boundaries.

The above analytical result allows us to easily analyze
dependence of the stability domain on the signal gaing.
Figure 9 illustrates that dependence for the mode config
tion (1,2). There are shown the slopesb1(g) andb2(g) of
the lines defining the boundaries of the stability domain. F
small values ofg, these slopes considerably differ from ea
other, and the stability domain occupies a large part of
(kx ,ky) plane. With increasingg the difference between th
slopes decreases, however, it remains finite wheng→`. The
latter guarantees the theoretical possibility of stabilizing
steady state for an arbitrarily large pump rate. The resu
valid for an arbitrary mode configuration (m,n), provided
mÞn. For m5n, the slopes coincide,b1(g)5b2(g), at any
g, and the stability domain disappears. This finding gives
analytical explanation why symmetrical mode configuratio
are uncontrollable.

From Fig. 9 it is obvious that the slopes satisfy the
equality b2(g),21,b1(g) for any g with the value21
located approximately in the center betweenb2(g) and
b1(g). Thus, a good choice of the parameters (kx ,ky) is the
one that lies close to the linekx2b52(ky2b) having a
negative unity slope coefficient. Knowledge of such a re
tionship between the parameterskx andky can be useful for
an experimental search of the stability domain in the (kx ,ky)
plane. For anyg stabilization is possible for any (kx ,ky)
lying in the domainb1(`)(ky2b),kx2b,b2(`)(ky2b)
and especially for the linekx2b52(ky2b). Thus, one can
fix the parameters (kx ,ky) in that domain and track the
steady state from a region of small signal gaing ~where the
fixed point is stable without feedback! to the region of large
signal gain. The tracking procedure will be considered
Sec. VII.

VII. TRACKING THE STEADY STATE

We have verified numerically the linear control theory
integrating the system of nonlinear differential equations~2!.
We applied the fourth-order Runge-Kutta method@11# with

FIG. 9. The slope coefficientsb152py
(1)/px

(1) and b25

2py
(2)/px

(2) of the lines defining the boundaries of the control d
main @Eqs.~35!# vs signal gaing for the mode configuration (1,2)
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the fixed time steph50.02. The numerical analysis show
that the linear theory correctly predicts the stability doma
for different control strategies. Figure 10 illustrates an e
ample of the system dynamics, time series of the total int
sity S5Sx1Sy of the infrared light, in the case of propo
tional feedback control for the mode configuration (1,2) a
the signal gaing520. The control parameters (kx ,ky)
5(10,28.6) are chosen on the linekx2b52(ky2b). To
avoid large values of the feedback signal the perturbatiou
has been restricted in the following way. Foruuu,um with
um representing some predetermined maximum value,
perturbation has been calculated from Eq.~26!. Whenu ex-
ceeded the maximum (um) or minimum value (2um), we
ascribed it toum or 2um , respectively.

The asymptotic dynamics essentially depends on the
tial conditions. If the initial conditions are close to the fixe
point, the feedback perturbation stabilizes the steady s
@Fig. 10~a!#. If the perturbation is switched on, when th
initial conditions lie on the strange attractor of the unco
trolled system, the perturbation cannot stabilize the ste
state@Fig. 10~b!#. This is because the trajectories belongi
to the strange attractor are far away from the fixed point
the fixed point has only a finite domain of attraction in pha
space.

In order to overcome that problem, one can use the tra
ing procedure. Here, we switch on the feedback perturba
at a low signal gaing corresponding to a stable steady sta
of the unperturbed system and then increase it slowly t
desired level. If the rate of varyingg is slower than a char
acteristic transient rate of the steady state, the system a
batically follows the changes ofg by remaining inside the
stability regime of the steady state. Due to the existence
the universal~for any g) stability domain in the (kx ,ky)
plane, the parameterskx andky can be fixed during the track
ing procedure.

Figure 11 illustrates the tracking of the steady state for

FIG. 10. The dynamics of the total intensityS5Sx1Sy of the
infrared light for proportional feedback control determined by t
numerical solution of Eqs.~2!. The mode configuration is (1,2)
The parameter values areg520, kx510, ky528.6, Sx

05I x

'7,539, Sy
052I y'237.979, andum510. ~a! and ~b! correspond

to initial conditions chosen close and far away from the steady-s
solution, respectively.
s
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mode configuration (1,2). The solid line corresponds to
stabilized steady state. The points describe the bifurca
diagram of the uncontrolled system. They show an evolut
of the minima of theSx signal under the increase ofg. In the
absence of the feedback signal, the system experiences
odic as well as chaotic oscillations. The tracking proced
allows us to keep the system on the originally unsta
steady state for an arbitrarily large signal gaing. In order to
take our simulations as a more accurate approach to a
experimental situation, we have applied a slightly modifi
proportional feedback method@12#. A low-pass filter was
incorporated in the feedback loop, to provide an automa
search of the steady-state valuesSx

0 andSy
0 that are required

for the original proportional feedback technique. The filt
produces an additional degree of freedom defined by the
ferential equation

z85vc~kxSx1kySy2z!, ~36!

where vc50.01 gives the characteristic cutoff frequenc
The output of the filter is taken as the feedback signal

u5kxSx1kySy2z. ~37!

The filter tends to adapt thez variable to the steady state o
the system,z5kxSx

01kySy
0 . At vc→0 the present method

becomes close to the conventional proportional feedb
technique with the obvious advantage that it does not req
knowledge of the steady-state valuesSx

0 andSy
0 @12#. Due to

its adaptive features, our technique can be successfully
plied, even in the case of a slow drift of the system para
eters.

Note that the linear analysis of the system presented
Secs. IV, V, and VI is performed under the assumption
identical parameters of the different modes. As a con
quence, we have been able to simplify the stability probl
by separately looking at the dynamics of the sumssx andsy
and the dynamics of the system in the subsp
(sx ,sy ,sx8 ,sy8)50. The identity of the modes is responsib
for the degeneration of the eigenvalues of the fixed point
real laser systems, however, the parameters of the mode
slightly different. These circumstances destroy the symme

te

FIG. 11. The bifurcation diagram of the system for the mo
configuration (1,2) obtained in the absence of the feedback sig
The minima of intensitySx are plotted vs the signal gaing. The
thick solid line indicates the stabilized steady state obtained by
tracking procedure. The values of the parameters arekx510, ky5
28.6, um510, andvc50.01.
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of the system and abolish the degeneration of the eigen
ues. The question arises, how sensitive is the stabiliza
procedure with regard to a small scattering of the mode
rameters. To answer that question we have analyzed
problem numerically. Figure 12 displays the bifurcation d
gram and the steady state stabilized by the tracking pro
dure in the case of a randomly scattered factorm jk . Any
difference between the mode parameters leads to a m
complicated bifurcation diagram compared to that presen
in Fig. 12. There are more chaotic and high-periodic sta
compared to the case of identical modes, however, the tr
ing procedure still works. Stabilization of the steady state
possible even for a rather large scattering of the factorm jk
reaching 50%. Similar results have been observed upon s
tering other parameters of the modes. So far, the result
Secs. IV, V, and VI are only weakly sensitive to a sm
scattering of the mode parameters.

In Secs. V and VI, we have demonstrated that the sy
metric mode configurations (m5n) are uncontrollable.
However, they may become controllable, if we take into
count the nonidentity of the mode parameters. The lin
analysis in Secs. V and VI has been performed for fix
numbersm andn. In a real experimental situation, the num
ber of modes changes with increasing the pump rate. Th
because the different modes have different signal gainsg. To
model that finding, we simply have replacedg by pgk in Eq.
~2!, wherep describes the pump rate. For the initial mo
configuration (2,2) and different values ofgk , the bifurca-
tion diagram of the system as a function of the pump ratp
is shown in Fig. 13~a!. The solid curve corresponds to th
stabilized steady state attained by the tracking proced
Figure 13~b! illustrates the dependence of the stabilized
dividual mode intensities on the pump ratep. I 1 andI 2 relate
to the X polarization,I 3 and I 4 to the Y polarization. With
increasingp, there first appear theY-polarized modes tha
have larger signal gains (g451, g350.95) and later the
X-polarized modes having smaller gains (g250.9, g1
50.85). For moderate values ofp, all four modes coexist in
a stable state. A subsequent increase of the pump ratep leads
to the death of the modeI 1. That mode has the smallest gai
and it loses the concurrence with other modes.

FIG. 12. The same as in Fig. 11, but the parameters of
modes are not identical. The factorm jk is scattered randomly by
20% around the constant values (m jk5g andm jk512g for parallel
modes and otherwise, respectively! taken in the previous consider
ation.
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In order to prevent spurious stable steady states that
stem from a finite-precision arithmetic, small noise w
added to the system during our simulations. Uncorrela
random numbers uniformly distributed inside the interv
@0,an# with an51027 have been added to the intensitiesI k at
every step of the numerical integration. The tracking pro
dure still worked, when the noise amplitudean was enlarged
up to 1024. This finding clearly shows that the feedbac
signal can maintain the stability of the steady state, even
the presence of rather large noise.

VIII. CONCLUSIONS

The theoretical analysis of the multimode, intracavit
doubled Nd:YAG laser uncovers that unwanted chaotic
gimes can be successfully stabilized by modulating the la
pump rate with the feedback signal composed of two exp
mentally available quantities, namely, the total intensities
the infrared light polarized in two different orthogonal dire
tions. Our analysis is based on the model consideration
2(m1n) coupled rate equations for the intensities and ga
of m modes polarized in theX direction andn modes polar-
ized in the Y direction. The stability of the steady sta
mainly derives from a closed system of two second-or
coupled linear differential equations for the total intensit
sx andsy that splits off from the original linearized system o
the model equations. Due to this fact, the total intensitiessx
andsy are efficient feedback parameters, capable to con
the stability of the fixed point.

We have analyzed different strategies based on pro
tional feedback control, derivative control, and combin
control. In appropriate parameter spaces, we determined
stability domains of the steady state. The proportional fe
back control turns out to be most convenient for experim
tal applications. For this control strategy, we derived a

e

FIG. 13. ~a! The minima of the intensitySx and ~b! stabilized
intensitiesI k as a function of the pump ratep for the mode configu-
ration (2,2) at different values of the signal gain:g150.85, g2

50.9, g350.95, andg451. The thick solid line~a! corresponds to
the stabilized steady state obtained by the tracking procedure.
insert ~b! shows an enlarged region close to the origin.
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proximate analytical conditions of stability.
The linear control theory has been verified numerically

simulating the original model of 2(m1n) nonlinear coupled
differential equations. Therefore, it follows that the fixe
point of the controlled system has only a finite domain
attraction. The trajectories lying on the strange attractor
the system are far away from the fixed point and, hen
cannot be stabilized by simply switching on the feedba
perturbation. Stabilization of the system, however, can
attained via the tracking procedure. We have analyze
modified proportional feedback technique that incorporate
low-pass filter into the feedback loop, in order to provide
automatic adjustment to the position of the fixed point. W
also have investigated numerically the influence of scatte
d,

s,
y

f
f

e,
k
e
a
a

n
e
g

of the parameters of different modes as well as the influe
of noise. Our theoretical analysis strongly proves that
above chaos control method is applicable to a real-wo
laser experiment.
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